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a b s t r a c t

Basic mathematical functions are applied for the two-dimensional geometrical and kinematical analysis
of different fold shapes. Relationships between different fold parameters are established and related to
the bulk shortening taking place during folding under upper crustal conditions. The bulk shortening
taking place during constant arc length folding is mathematically related to the bulk shortening during
homogenous pure shear using a particular aspect ratio, which is for folding the ratio of amplitude to half
wavelength and for pure shear the ratio of vertical to horizontal length of the deformed, initially square
body. The evolution of the fold aspect ratio with bulk shortening is similar for a wide range of fold shapes
and indicates that the fold aspect ratio allows a good estimate of the bulk shortening. The change of the
geometry of individual layers across a multilayer sequence in disharmonic folding indicates a specific
kinematics of multilayer folding, referred to here as “wrap folding”, which does not require significant
flexural slip nor flexural flow. The kinematic analysis indicates that there is a critical value for constant
arc length folding between shortening values of 30e40% (depending on the fold geometry). For short-
ening values smaller than the critical value limb rotation and fold amplitude growth are dominating. For
shortening larger than this value, faulting, boudinage and foliation development are likely the domi-
nating deformation process during continued shortening. The kinematical analysis of constant arc length
folding can be used for estimating the bulk shortening taking place during multilayer folding which is an
important component of the deformation of crustal rocks during the early history of shortening. The bulk
shortening is estimated for a natural, multilayer detachment fold and the shortening estimates based on
the kinematic analysis are compared and supported by numerical finite element simulations of multi-
layer detachment folding in power-law materials.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Folding, faulting and layer-parallel homogeneous shortening are
three mechanisms for the deformation (shortening) of layered
rocks in fold-and-thrust belts (Dixon and Liu, 1992). The research
on folds and folding covers a wide range of studies focusing on
different topics such as: (1) using and synthesizing mathematical
functions to describe fold geometries (Currie et al., 1962; Stabler,
1968; Hudleston, 1973a; De Paor, 1996; Bastida et al., 1999, 2005;
Jeng et al., 2002; Aller et al., 2004), (2) analytical solutions
employing different rheologies for analyzing folding processes
(Chapple, 1968; Johnson and Ellen, 1974; Johnson and Honea,
assemi.m.r@gmail.com (M.R.

ontology, University of Lau-
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1975a,b; Biot, 1961, 1964, 1965a,b; Schmalholz et al., 2002), (3)
numerical and analogue modeling of single- and multilayer folding
investigating dominant wavelengths and amplification rates
(Sherwin and Chapple, 1968; Hudleston, 1973a,b; Abbassi and
Mancktelow, 1990, 1992; Vacas Peña and Martínez Catalan, 2004;
Jeng and Huang, 2008), (4) analyzing the geometry of folded
layers using the layer thickness perpendicular to layering and
parallel to the fold axial plane as variables (Ramsay, 1967;
Hudleston, 1973c; Ramsay and Huber, 1997), (5) investigating the
kinematic implications of folding by studying the type and distri-
bution of strainwithin the folded layers (Johnson and Honea,1975a,
Hudleston et al., 1996; Bastida et al., 2003, 2005, 2007; Bobillo-Ares
et al., 2006), and (6) studying folds in relation to other structures
such as faults, boudins, foliations and lineations (Sengupta, 1983;
Mawer and Williams, 1991; Kobberger and Zulauf, 1995; Kraus
and Williams, 1998; Mitra, 2003; Savage and Cook, 2003).

In this study, we apply kinematic models of constant arc length
folding for estimating the bulk shortening taking place during
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Table 1
General functions for different fold geometries used in this study for analyzing fold
geometry and kinematics.
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folding. The kinematic models are based on geometrical models
describing observed fold shapes in profile view. Fold profiles are
sections (orthogonal to the fold axis) of folded lines and their
geometry can be approximated with mathematical functions.
Different functions have been suggested for this purpose, which
can be grouped in two major categories: non-periodic functions
(Hudleston, 1973a; De Paor, 1996; Bastida et al., 1999, 2005; Aller
et al., 2004; Bastida et al., 2005) and periodic functions (Currie
et al., 1962; Stabler, 1968; Hudleston, 1973a; Bastida et al., 1999;
Jeng et al., 2002).

This study briefly summarizes and builds on previous work on
the geometry of a single folded layer in a two-dimensional profile
(e.g. Stabler, 1968; Hudleston, 1973a,b; Bastida et al., 1999). The
study applies basic mathematical procedures for shortening
analysis of folds, and the quantities limb dip, interlimb angle, arc
length, curvature, aspect ratio (i.e. ratio of fold amplitude to half
wavelength) and area under the folded layer are analyzed for
different fold types. The presented kinematical analysis is applied
to estimate the bulk shortening that took place during folding of
a natural multilayer detachment fold. The results of the kinematical
analysis are compared with an analytical solution for the
mechanical process of viscous single-layer folding and with
numerical finite element simulations of ductile, multilayer
detachment folding. The comparisons show that the kinematical
folding analysis can provide good approximations for the bulk
shortening during folding. Potential applications of the presented
analyses for estimating the shortening, the variations of the
geometry in a folded sequence, and the fold growth are discussed.

2. Fold geometry

2.1. Representing fold geometries with mathematical functions

Fitting all fold shapes with one type of mathematical function is
not suitable because geometries of natural folds vary significantly.
For example,methods forfitting foldswith ellipses (Mertie,1959) are
unsuitable for an accurate representation of fold shapes and many
common fold styles (e.g. chevron folds) cannot be represented at all.

Representing fold shapes with Fourier series received most
attention (see Norris, 1963; Chapple, 1964, 1968; Harbaugh and
Preston, 1965, Stabler, 1968; Hudleston, 1973a; Ramsay and
Huber, 1997) because many folds are naturally periodic. The Four-
ier analysis of fold shapes is useful for sinusoidal fold shapes (see
Stabler, 1968; Hudleston, 1973a), however, it has some drawbacks
when applied to other fold shapes (see Bastida et al., 2005).

Several studies (Bastida et al., 1999; Aller et al., 2004; Bastida
et al., 2005; Lisle et al., 2006) suggested a range of functions for
representing fold shapes. Bastida et al. (1999) suggested a power
function:

y
y0

¼
�
x
x0

�n

(1)

in which n characterizes the fold shape, x0 and y0 are the coordi-
nates of the inflexion point on the fold limb, and y and x are the
vertical (i.e. parallel to the fold axial plane) and horizontal coordi-
nates, respectively. In order to have a common coordinate system2

and to analyze the fold limb between an inflection point at the
origin of the coordinate system and the fold hinge we use a similar
function:
2 Following Hudleston (1973a) and Ramsay and Huber (1997), this paper assumes
the y axis of the coordinate system passing through inflection point of the fold and
parallel to the axial surface of the fold. The x axis also passes through the inflection
point, and is perpendicular to the y axis.
y ¼ 4
A�

1� ð1� xÞn�; (2)

w

where A and w are the amplitude and wavelength of the fold,
respectively. This equation does not have the inconveniences of Eq.
(1) which are described in Bastida et al. (2005). Equation (2) can be
modified to a function for the variable pwhich is the aspect ratio of
the fold and defined as the ratio of fold amplitude to half the fold
wavelength (Twiss, 1988):

y ¼ 2p
�
1� ð1� xÞn�: (3)

For n¼ 1 Eq. (3) is

y ¼ 2px; (4)

and represents ideal chevron folds.
For n¼ 2 Eq. (3) is

y ¼ 2p
�
2x� x2

�
; (5)

and represents parabolic folds.
Applying a power of 0.5 to the right term in braces in Eq. (5)

results in

y ¼ 2p
�
2x� x2

�0:5
; (6)

and represents ellipsoidal folds.
Using n> 2 in Eq. (3) produces double hinge fold shapes (see

Table 1).
Equations (3)e(6) and the Fourier series for the first harmonic

can be used to describe a wide variety of fold shapes. These
equations are not based on one type of function and, therefore, lack
the continuity of fold shapes which is for example a feature of the
power function of Eq. (1) (Bastida et al., 1999). However, because of
the wide diversity of natural fold shapes we represent here basic
fold shapes with specific functions that best fit the observed fold
shape (see Table 1).

Cuspate folds are not represented with any specific function
because all functions listed in Table 1, except the linear function,
represent different shapes of cuspate folds when they are mirrored
against the chord of the fold’s quarter wavelength.

2.2. Basic geometrical implications of fold shapes

The interlimb angle, i, of upright symmetrical chevron folds is
related to their aspect ratio, p:

i ¼ 2 arctan
1
2p

: (7)

Ghent and Hansen (1999) used an equation similar to Eq. (7),
however, what they termed fold wavelength is in fact the fold’s half
wavelength. The interlimb angle is increasingly smaller for sinu-
soidal, parabolic and double hinge folds for the same value of p. The
maximum dip of the fold limb, l, at the inflection point of upright
Fold type General function

Chevron y¼ 2px
Sinusoidal y¼ 2p sin(p/2x)
Parabolic y¼ 2p(2x� x2)
Ellipsoidal y¼ 2p(2x� x2)0.5

Double hinge (box) y¼ 2p(1� (1� x)n); n> 2
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symmetrical folds can be calculated from the interlimb angle
(l¼ 90� i/2). Equation (7) is used for calculating the value of p as
function of the interlimb angle and the limb dip for symmetric
chevron folds. For the other fold types, equations similar to Eq. (7)
can be used (Fig. 1).

In mechanical models for folding of linear viscous single layers,
the evolution of the fold’s aspect ratio, p, with increasing horizontal
bulk shortening is different for different viscosity ratios between
the layer and the embedding matrix (Fig. 2-A; Schmalholz and
Podladchikov, 2000; Schmalholz, 2006). The reason is that the
smaller the viscosity ratio is the larger is the component of arc
length shortening and layer thickening. For large viscosity ratios
(>about 500) single-layer folding is close to constant arc length
folding because layer thickening is very small. However, the
evolution of p with increasing interlimb angle is identical for all
viscosity ratios because the fold shape is assumed to be sinusoidal
in the analytical solution of Schmalholz (2006) (Fig. 2-B). This
analytical solutionwas compared with two-dimensional numerical
simulations of viscous single-layer folding and the analytical
amplification prediction agreed well with the numerical results
(Schmalholz, 2006). Therefore, the kinematical curve of p versus
the interlimb angle for sinusoidal fold shapes (Fig. 1) is a good
approximation for the amplification of natural single-layer folds.

2.3. Curvature and dip distribution along fold profile

The pattern of curvature variation along the folded line and the
sign of curvature can be used to define all fold types. The fold hinge
is the point of maximum curvature and the inflection point is the
point of minimum (zero) curvature, and also the point where the
curvature changes sign. The curvature can be used for estimating
the strain ratio in different areas of the fold during buckling (see
Ramsay, 1967, p. 391; Bobillo-Ares et al., 2006) and for calculating
tangential longitudinal strain (Bobillo-Ares et al., 2000). The first
derivative of the function defining the fold shape is the limb dip and
can be used for estimating the angular shear strain in flexural slip
folding (see Ramsay, 1967, p. 393).

Ramsay (1967, p. 347) describes the curvature variation across
a folded line as a quantity that can be used to define different types
of fold shapes (see also Chapple, 1969). Bastida et al. (2005) also
Fig. 1. Diagram of interlimb angle and maximum limb dip of different fold shapes versus the
constant interlimb angle and limb dip of ellipsoidal folds plotted at the right of the diagram
considered the curvature, k, as a basic parameter in the kinematical
analysis of folding:

k ¼ 1
r
¼ f 00ðxÞh

1þ f 0ðxÞ2
i1:5 (8)

where r is the radius of curvature, and f’(x) and f"(x) are the first and
second derivatives of f(x), respectively. In order to analyze the dip
pattern and curvature distribution we plotted (Fig. 3) the profile of
the folded line together with the first derivative and the curvature
(Eq. (8)) of the function describing the fold shape.

Chevron folds are different from other folds in having a long
inflection zone relative to their hinge zone. The curvature is
minimal (zero in ideal chevron folds) in most of the limb making
the definition of an inflection point difficult. Equation (4) describing
chevron folds provides the limb dip l¼ arctan (2p) and the inter-
limb angle i¼ 180� 2 arctan (2p). For all other fold types a similar
relation, namely i¼ 180� 2l, is applicable. Sinusoidal folds have
both the highest gradient in curvature in the limb and the highest
curvature in the hinge zone compared to parabolic and ellipsoidal
folds of the same aspect ratio (Fig. 3). The maximum dip at the
inflection point is arctan (pp).

A problem of using non-periodic functions to define fold shapes
is the discontinuity in curvature at the inflexion points. Since the
curvature of parabolic, ellipsoidal and double hinge folds does not
go to zero (see Fig. 3) a combination of these functions cannot
produce ideal fold shapes at the inflection point where zero
curvature is required in joining the quarter wavelength sections of
several anticlineesyncline pairs. For these cases the point of
curvature sign change can be considered as the inflection point.
Parabolic folds have less curvature at the hinge zone as compared to
sinusoidal folds, but have a higher curvature relative to ellipsoidal
folds of the same aspect ratio (see Fig. 3). The maximum curvature
of parabolic folds is twice the maximum curvature of ellipsoidal
folds of the same aspect ratio. The maximum dip at the inflection
point of parabolic folds equals arctan (4p).

For p¼ 0.5 the shape of an ellipsoidal fold is a semicircle and the
curvature is constant in the limb (Fig. 3). However, with increasing
values of p the curvature becomes more differentiated in the hinge
zone. The maximum dip at the inflection point for all ideal
aspect ratio, p (i.e. ratio of fold amplitude to half the wavelength), of the folds. Note the
.



Fig. 2. Finite amplitude solution for linear viscous single-layer folding (Schmalholz,
2006). A) The fold aspect ratio, p, versus the horizontal shortening for different
values of the viscosity ratio, R. Folding with a high viscosity ratio of 1000 is close to
folding with constant arc length. Folding with smaller viscosity ratios includes
a considerable component of arc length shortening which is visible in smaller aspect
ratios at equal amounts of shortening. B) In the space aspect ratio, p, versus interlimb
angle all lines for different viscosity ratios collapse because the fold shape is always
sinusoidal independent on the amount of arc length shortening and corresponding
layer thickening.
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ellipsoidal folds equals 90�. Therefore, ellipsoidal arcs are the best
curves to define isoclinal folds.

Double hinge folds have a separate point of maximum curvature
in each limb and the curvature declines to zero at the midpoint
between the two hinges. The magnitude of curvature at the hinges
and the dip of the limb at the inflection point increases with an
increasing value of the power, n, of the function describing the fold
shape. Box folds can be considered as members of the double hinge
fold family.
Fig. 3. Dip and curvature diagrams for different fold shapes with an aspect ratio of 0.5. The
and interlimb angle, i, are shown at the bottom of each diagram.
3. Fold kinematics

3.1. Bulk shortening during constant arc length folding

Following early works of, for example, Chamberlin (1910),
Ramsay’s method (1967, p. 387) allows quantifying the bulk
shortening (i.e. the horizontal shortening between two fold hinges)
resulting from folding. Ramsay defined themaximum shortening of
a concentrically folded competent layer as

100ð2pt � 4tÞ=2pt ¼ 36%; (9)

where t is half the thickness of the layer, and also the radius of
curvature for the semicircle defining the fold shape. The shortening
value of 36% in Eq. (9) agrees with the results for shortening in this
study for an ellipsoidal fold with an aspect ratio of 0.5 (Fig. 4).

The arc length, L, of a folded line can be calculated with

LðxÞ ¼
Zw=4

0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �f 0ðxÞ�2q �

dx; (10)

where w is the wavelength of the fold. Assuming a constant arc
length, L, during folding, the value of L can be used for estimating
the bulk shortening, e, perpendicular to the axial surface with

e ¼ lf � li
li

¼
w
4 � L
L

(11)

For chevron folds the shortening is related to the aspect ratio
through the relation

p ¼ 0:5

 
1

ð1þ eÞ2
� 1

!0:5

(12)

Similar relations exist between the shortening, e, and the aspect
ratio, R, of a bodywith an unstrained ratio of 1 (i.e. square) andwith
the same mechanical property as the matrix that has been
deformed without area change (pure shear in two dimensions
under plane strain):

R ¼ 1

ð1þ eÞ2
; e ¼ 1

R0:5
� 1; (13)

from which relations can be established between p and R:

p ¼ 0:5ðR� 1Þ0:5; R ¼ 4p2 þ 1 (14)
function applied for double hinge fold has a value n¼ 4. Limb dip at inflection point, l,



Fig. 5. Comparison of deformations resulting from homogeneous pure shear (a) and
from symmetrical chevron folding (c); (b) represents the initial geometry before
shortening. The area left over from up-folding of layers at the bottom is balanced with
the area projected at the top. Shortening in both cases is 30%, and of plane strain
character (constant area or constant layer thickness).

Fig. 4. Variation of fold aspect ratio, p, and homogeneous strain ratio with shortening.
Note a maximum variation of shortening (about 10%) between different fold shapes at
an aspect ratio of about 0.5. (C) Chevron, (S) sinusoidal, (P) parabolic, (E) ellipsoidal, (D)
double hinge of function power n¼ 4.

M.R. Ghassemi et al. / Journal of Structural Geology 32 (2010) 755e765 759
Using the above equations and introducing different values for the
aspect ratio, the shortening of folds exhibiting different fold types
can be calculated (Fig. 4). Currie et al. (1962) presented a diagram
similar to Fig. 4.

The diagram in Fig. 4 can serve as upper limit for fold amplifi-
cation diagrams (see Ramsay, 1967, p. 379; Hudleston, 1973a,b)
when a significant viscosity ratio between the folded layer and the
embedding matrix minimizes layer-parallel shortening. The
calculated values of shortening are close for specific aspect ratios of
different fold shapes, and show a maximum variation of about 10%
at pz 0.5 (see Fig. 4). Increase of the aspect ratio accelerates with
increasing shortening values indicating a decrease of the folding
process as the major process of shortening.

The change in limb dip with shortening has also a dynamic
implication, because the increasing limb dip causes a rotation of the
normal to the folded layers towards the direction of the maximum
principal stress (i.e. the compression direction). This increases the
ratio of normal to tangential stress which in turn prohibits layer-
parallel slip and, therefore, flexural slip folding.

Distortion, translation and rotation occur both in homogeneous
pure shear and folding, however, homogeneous pure shear mostly
involves distortion, while folding generally requires a major
component of rigid body deformation including translation and
rotation. Such difference is essential during folding of multilayered
rocks with varying viscosities. Stiff layers tend to deform mostly by
rigid body deformation, and the particle path they develop differs
from the one for homogeneous strain in their confining medium.
The resultant of these paths defines the bulk deformation of the
multilayered rocks.

We compare the bulk shortening resulting from a simple
model of chevron folding with the bulk homogeneous shortening
due to pure shear (Fig. 5). The aspect ratio of the folded multi-
layers is

Rf ¼ Ta
M
; (15)

where Ta and M are the apparent thickness of the folded layers
parallel to the axial plane and half the wavelength of the folds,
respectively. The apparent thickness of the layers is
Ta ¼ 1 : (16)

cos l

From Eq. (7) and the relation between the interlimb angle, i, and
limb dip, l, we can use the following equations to calculate the
apparent thickness:

l ¼ 90� i
2
; Ta ¼ 1

sin i
2

¼ 1
sin arctan 1

2p

: (17)

Using Eq. (12) and l0 ¼ 1/(1þ e)2 we get

Ta ¼ 1
sin arctan 1

ðl0�1Þ0:5
(18)

which can be modified into

Ta ¼
�
1þ 1

l
0�1

�0:5
�
l0 � 1

��0:5 ¼
�
1þ 1

l0 � 1

�0:5�
l0 � 1

�0:5 ¼ �
l0
�0:5

:

(19)

For an initial aspect ratio of 1 we get

M ¼ 1þ e ¼
�
1
l0

�0:5
; (20)

and, therefore, the aspect ratio of folded multilayers is

Rf ¼ Ta
M

¼
�
l0
�0:5

�
1
l
0

�0:5 ¼ l0 ¼ 1

ð1þ eÞ2
: (21)

Equation (21) may also simply be inferred from the condition of no
area change, and constant arc length folding. Comparing Equations
(21) and (13) for the aspect ratio of homogeneous shortening shows
that the bulk shortening taking place during folding in our model is
equal to the homogeneous shortening for pure shear. However, the
infinitesimal strains in different areas of the folded layers are
different, and the particle path and velocity field also deviates from
that of homogeneous strain. For a detailed mechanical analysis of
the velocity field for a chevron fold model see Pollard and Fletcher
(2005; pp. 177e182).

The strain within the layers of a chevron fold can be analyzed
with two end members: (i) the strain in the whole layer (Ramsay,
1967, 1974), and (ii) the strain in the hinge zone (Bastida et al.,
2007). As shown in Fig. 5, a bulk simple shear of value g¼ tan l
symmetrically affects both limbs of the chevron folds. This strain
can occur either by shear parallel to the axial plane or by shear
parallel to the layering and a rotation equal to the angular shear.
The first case is almost impossible because the shear plane is
perpendicular to the maximum shortening direction. Shear parallel
to the layering can occur either by slip along the layer contacts
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(flexural slip) or bulk shear within the layer (flexural flow). The sum
of these two shear strains should equal the bulk layer-parallel
simple shear of each limb. Where slip along the layer interfaces is
easy because of low friction and/or low cohesion between the
layers, or the presence of incompetent layers between competent
layers, the flexural flow has a lower share of the bulk shear. Where
interlayer slip is difficult, flexural flow dominates over flexural slip.
Following the suggestion of Hudleston et al. (1996) that flexural
flow is scarce in natural folds, the flexural slip should occur when
the folded sequence is composed of alternating high and low
viscosity layers, or most of the shear should take place in the hinge
area of chevron folds.

3.2. Kinematic implications

Field study of folds usually involves measurements of bedding
and/or foliation attitudes. These data are used to describe spatial
characteristics of the folds, such as interlimb angles. Having access
to data from geological maps, aerial photographs and satellite
images enables measuring the wavelength of folds. However,
without subsurface data it is difficult to evaluate fold amplitudes
and, therefore, the aspect ratio of folds. Assuming that the natural
fold geometry can be represented by one of the fold shapes
considered in this study, and having data for the interlimb angle or
the maximum limb dip, we can use diagrams similar to that shown
in Fig. 1 to estimate the fold’s aspect ratio. From the aspect ratio we
can estimate the amplitude of a single fold or a fold train or the
shortening that took place during folding. The method can be used
in areas of detachment folding such as the Zagros simply folded belt
of Iran to analyze fold geometries and kinematics. This method can
also be used to estimate shortening due to folding on terrestrial
planets such as Venus, where erosion and deposition are not active,
and fold geometries might be deduced from surface topography
(Connors, 1995). This is especially practical where it is possible to
produce a slope map of the planet surface using remotely devel-
oped topographic maps.

Another implication of the analysis is that when the bulk finite
strain is homogeneous in the direction of shortening, we would
expect that the shortening inboth limbsof asymmetric folds is equal.
This helps to evaluate shortening in the long limb of asymmetric
folds and extrapolate it into the short limb of the fold, and vice versa.

It is instructive to compare the fold shape, the length of the
folded layer, and the area under the fold profile in a simple diagram
(Fig. 6). Cuspate folding produces the smallest area in the core of
the fold, while chevron, sinusoidal, parabolic, ellipsoidal and
double hinge folding produce larger areas in their cores. A similar
sequence of fold types may appear in a folded section of multilayers
from the core of the fold in an outward direction. Disharmonic folds
that developed due to space problems in parallel folding above
detachments show chevron folds and even isoclinal folds in their
core (Mitra, 2003).
Fig. 6. Comparison of fold shape and area under the fold for different fold shapes with
aspect ratio of 0.5. (Cu) cuspate, (C) chevron, (S) sinusoidal, (P) parabolic, (E) ellip-
soidal, (D) double hinge (for n¼ 4).
When shortening is more or less constant in direction parallel
and perpendicular to the axial plane, the fold geometry across the
layered section and across the fold train should vary and
compensate this shortening continuity. In the case of parallel
folding, the available space decreases towards the fold’s core. This
leads to a decrease inwavelength but does not affect the amplitude
(Fig. 7). Ramsay’s classification (p. 365, 1967) also requires
a decrease of the inner arc curvature for the class 1 of folds
(including parallel folds). The situation is opposite in anti-
clineesyncline pairs and, therefore, the differential shortenings
may cancel out along a fold train. In a single fold (e.g. anticline),
however, the change in wavelength alters the aspect ratio of the
fold and, therefore, affects shortening. In this case, when short-
ening has to be constant, it is distributed with an increase in
wavelength as well as a change of fold geometry. This results
generally in disharmonic folding.

Disharmonic folding as described here also prevents flexural slip
that is required for constant limb lengths across the folded sequence.
In this mode of folding the outer layers of the folded sequence are
increasingly longer and in factwrap around inner layers. Thismaybe
named “wrap folding”, which contrastswith folding accommodated
by simple shear between and within the layers.

It is also instructive to compare the profiles of different fold
shapes for their potential in conserving the layer thickness at the
inflection point and the hinge zone (Fig. 8). This comparison indi-
cates that for parallel folding (i.e. folding with constant thickness),
chevron foldsbest conserve the foldgeometry in termsof amplitude,
wavelength and fold shape with a minimum matrix area in hinge
zone. Chevron folds also do not decrease the limb thickness for
similar folding (i.e. foldingwith constant fold shape). Sinusoidal and
parabolic folds produce more extra matrix area in their hinge zone
for parallel foldingwhen the fold type is constant; for similar folding
they require some thinning of the limbs at the inflection points.
Ellipsoidal and double hinge folds produce very large extra space in
theirhinge zones for parallel foldingand they requirea largeamount
of thinning in their limbs for similar folding. Cuspate folds produce
extra space both in their limbs and in their hinge zones for parallel
folding. However, for similar folding the limb thickness is constant
except for some thinning in the hinge zone.

A decrease of wavelength requires that the amplitude also
decreases in order to keep the aspect ratio constant. Otherwise the
fold type changes into a type that accommodates less shortening
and needs less space. This is in agreement with conclusions of
previous studies (Carey, 1962; Goguel, 1962; de Sitter, 1964;
Dahlstrom, 1990; Johnson and Honea, 1975b; Mitra, 2003) indi-
cating that the core of concentric folds is a favored site for the
development of chevron folds.
Fig. 7. (a) Change in fold profile geometry in a layered sequence. (b) Amplitude and
half wavelength of the layers. The amplitude of the folds is constant and the half
wavelength decreases linearly towards the fold’s core in the anticline, which is
compensated by an increase in the half wavelength outward in the neighboring
syncline. Note the almost linear decrease of limb length towards the core.



Fig. 8. Conservation degree of folded layer thickness parallel to axial plane (a), and perpendicular to layering (b). Note the extra space (black area) that is present between folded
layers in parallel folding. (Cu) cuspate, (C) chevron, (S) sinusoidal, (P) parabolic, (E) ellipsoidal, (D) double hinge (with n¼ 4).

M.R. Ghassemi et al. / Journal of Structural Geology 32 (2010) 755e765 761
If folding starts at depth and propagates up section it is possible
that folding starts as chevron folding at depth and varies into
broader types of folds up section. It is also possible that, as deduced
from the usually acute angle of chevron folds byBastida et al. (2007),
these core folds may evolve form more rounded fold shapes.

4. Application to natural and synthetic multilayer folds

We applied the kinematic models to a natural multilayer
detachment fold. A series of mesoscopic folds in dolomitic lime-
stone layers of the Elika Formation (Triassic) outcropped in the
north central part of the Alborz range (Figs. 9 and 10) provides an
example for the change of the geometry of folded layers through
the folded sequence. The folded sequence exhibits a minor fault in
the core. The fold geometry changes from chevron through sinu-
soidal to double hinge fold shapes from bottom to top of the folded
sequence. The bulk shortening was calculated between two refer-
ence lines perpendicular to the original layering (Fig. 9). The
reference lines were selected closest to the main anticline in the
section to minimize the amount of variation in the shortening
calculation. The calculated values of shortening increase slightly up
section, however, the variation in shortening values is small
(Fig. 10). The half wavelength of the folded layers, however,
increases considerably (about 5 times) up the section (Fig. 9).
Shortening is almost constant across the section indicating that
multilayer folding accommodates space and shortening with both
a change in fold shape from chevron to double hinge and a decrease
in aspect ratio (because of an increase in the distribution of
deformation and an increase of wavelength).
Fig. 9. Left picture shows a folded sequence of dolomitic limestone (Elika Fm.) in the north
indicate a fault. Dashed lines in the left part indicate the axial trace of the folded layers. Dash
straight lines bound parts of the folded layers that are used for calculating the shortening ass
type across the multilayer fold.
The natural detachment fold in Fig. 9 is localized and only
a single multilayer fold was observed in the field (no additional
folds are present along the layering). Numerical simulations of
multilayer detachment folding were applied to generate a multi-
layer fold similar to the one observed. The applied numerical
algorithm is based on the finite element method, can model linear
viscous and power-law rheologies, and is described in detail in
Schmalholz et al. (2008). For all simulations, all layers were initially
flat, but had a small geometrical step of 1/25th of the layer thick-
ness in the middle of the model domain to trigger folding. For the
linear viscous material the viscosity ratio between layers and
matrix was 100. For the power-law material the viscosity ratio was
100 and layers and matrix had a power-law exponent of 5. Initially,
the distance between individual layers was 1/10th of the layer
thickness. The numerical simulations of multilayer detachment
folding with linear viscous rheology show that there is always
lateral fold propagation during shortening, although the initial
geometrical perturbation is localized (Fig. 11). Therefore, it is not
possible to generate a single, localized multilayer fold as the one
shown in Fig. 9. If a non-linear, power-law rheology is used, then
folding is localized and a single fold can develop (Fig. 12). This
indicates that the rheology during the formation of the observed,
localized multilayer fold is better described with a power-law
rheology than with a linear viscous rheology. The power-law
rheology yields larger amplification rates than the linear viscous
rheology for the same effective viscosity ratio and, therefore,
folding is closer to constant arc length folding.

Estimating the horizontal shortening from the numerical
multilayer fold (from Fig. 12) assuming constant arc length
central Alborz range, Iran. Right panel shows a sketch of the fold geometry. Bold lines
ed lines in the right part indicate a zone of slight cataclasis in the folded layers. Vertical
uming a constant arc length during folding. The sketch illustrates also the change in fold



Fig. 10. Variation of the estimated shortening, the amplitude, half the wavelength and the layer thickness across the folded sequence in Fig. 9. Numbers in the panels indicate the
layer of the folded sequence in Fig. 9. Note the almost constant shortening and amplitude in contrast to the linear increase of the half wavelength across the sequence. The layer
thickness appears not to have any pronounced effect on the amplitude or wavelength.
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folding provides a minimum estimate, and the true horizontal
shortening known from the numerical simulation is slightly larger
(Fig. 13). For the particular numerical simulation shown in Fig. 13
the true shortening is about 5% larger than the estimated short-
ening. Also, the shortening of the individual layers is very similar
although their individual fold shapes are different. This agrees
with the distribution of shortening estimates for the observed
fold (Fig. 10).

The numerical simulations indicate that estimates of horizontal
shortening for localized multilayer folds based on the constant arc
length assumption provide minimum shortening estimates. These
estimates are likely not much smaller than the true shortening
value for high viscosity ratios because localized multilayer folds are
likely formed in power-law multilayers with a small amount of
layer thickening.
Fig. 11. Numerical simulation of multilayer folding above a detachment for a viscosity
ratio of 100 and a power-law exponent of 1 (i.e. linear viscous). Gray¼ stiff layers,
white¼weak matrix and black¼ base with no vertical movement. Several folds
develop due to lateral fold propagation.
We calculated the variation of the area, B, under the folded
surface for symmetrical chevron folds with increasing short-
ening (decreasing wavelength and increasing aspect ratio)
with

B ¼ M
2

 
0:25�M2

4

!0:5

(22)

where M is half the wavelength of the fold.
The crestal uplift of the fold can be maximal 2A when the

detachment surface allows no downward movement of the folded
layers. The variation in amplitude, A, is an indicator of crestal uplift
in active folds and can be calculated with
Fig. 12. Numerical simulation of multilayer folding above a detachment for a viscosity
ratio of 100 and a power-law exponent of 5. Gray¼ stiff layers, white¼weak matrix
and black¼ base with no vertical movement. Only one single fold develops due to the
localization of the deformation caused by the non-linear power-law rheology.



Fig. 13. A) Numerically generated fold shape. The two vertical lines indicate the
reference lines for the shortening calculation. B) Estimated and true (known from
numerical simulation) horizontal bulk shortening for each of the seven layers. The
estimated shortening value assumes constant arc length folding and is therefore
smaller than the true shortening value which includes a certain amount of arc length
shortening and corresponding layer thickening.

Fig. 14. Change in limb dip, amplitude (crestal uplift) and area under the fold profile of
symmetric upright chevron folds with shortening.

M.R. Ghassemi et al. / Journal of Structural Geology 32 (2010) 755e765 763
A ¼
 
0:25�M2

4

!0:5

(23)

The analysis (Fig. 14) shows that folding produces a maximum
area below the folded sequence at a shortening of about 29%
(interlimb angle of about 90�). Clearly, this maximum value occurs
at different amounts of shortening for fold types other than
chevron. For a comparison of the area under profiles for different
fold shape types see Bastida et al. (2005). The variation in area
below folded layers may be a reason for the cessation of folding as
the main mechanism for shortening after some amount of defor-
mation, and may explain the onset of faulting. Chapple’s (1968)
results may also be another evidence for the impact of the varia-
tion of the area in fold cores with shortening. He describes that at
a limb dip of about 65� an important change in the style of the
deforming fold occurs: the medium (matrix) ceases to move into
the crestal regions of anticlines and starts to be extruded from
between the fold limbs. de Sitter (1956, 1958) predicted the
cessation of chevron folding at an interlimb angle of 50e60�. He
also suggested that shortening of the crust by chevron folding by
more than 50e65% is unlikely. Similar conclusions may be reached
theoretically for the other types of fold shapes.

The analysis of the area below the folded layer (Fig. 6) has
implications for the rock volume available for erosion in an exposed
active fold and can help to understand the rise and demise of relief
in folded terranes. Increasing the relief of folded rocks to
a maximum can increase the solid load in antecedent rivers across
active folds while the riverbed gradient is being decreased as the
upstream limb of the fold is tilted. This may define a critical point at
which the river is either defeated or overcomes the fold uplift.

The limb dip of upright symmetric chevron folds can also be
calculated as a function of shortening:

l ¼ 90� arctan
�
l0 � 1

��0:5
: (24)

The above relation is shown in Fig. 14 (compare with Fig. 5 in
Ramsay, 1974). The relation is valid for the limit when the ratio of
layer thickness to limb length approaches zero (see Fig. 7-112 in
Ramsay, 1967).

Shortening as a function of limb dip is given by:

1þ e ¼
�
1þ tan2l

��0:5
: (25)

The increase of limb dip and amplitude of chevron folds with
increasing shortening indicates that limb dip and amplitude
initially grow fast up to a shortening value of about 30% (aspect
ratio of about 0.5 and limb angle of about 45�) and for larger
shortening values their growth rates decrease gradually (Fig. 14).
The curve in Fig. 14 also provides the limb rotation rate, which has
an impact on the geometry of growth strata above active folds, on
angular unconformities between these strata and on the flight of
fluvial terraces (for an analysis of this type see Scharer et al.,
2006).
5. Discussion and conclusions

It is useful for the regional kinematical analysis of folded
terranes to evaluate the bulk shortening that would have taken
place during folding with constant arc length. The kinematical
analysis allows calculating the fold arc length and, therefore, the
bulk shortening for different fold shapes.

This study indicates that bulk shortening taking place during
constant arc length folding is very similar for different fold
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geometries. The maximum difference in shortening is about 10% at
an aspect ratio of about 0.5 between shortening values of 30e40%.
This small variation in shortening values indicates that the aspect
ratio of folds can serve as a useful estimate of shortening due to
constant arc length folding.

The simple relationships between the fold aspect ratio, inter-
limb angle, limb dip, shortening and other parameters presented
in this study are suitable for the regional analysis of fold geome-
tries and kinematics when remote data are combined with field
studies, or when specific information about the folded terrain is
available.

The geometrical and kinematical comparison of shortening, fold
shape, limb dip, arc length and area below the profile for different
fold types provides useful information on:

- cross sectional variation of fold geometry in different layers,
especially for detachment folding of parallel type,

- rate of limb rotation, volume of material available to erosion,
and crestal uplift of active folds; parameters that can be applied
in studies of the geomorphological evolution of exposed folds
and of the evolution of growth strata over active folds, and

- potential of different fold geometries for conserving the layer
thickness perpendicular to the layering in parallel folding, and
parallel to the axial plane in similar folding.

The change in fold geometryacross layers in somedisharmonic fold
systems is an alternative mechanism of folding that may be termed
“wrap folding” which accommodates space variations without
requiring simple shear parallel to folded layers (flexural slip or flexural
flow).

One result of this study is the definition of a critical value of
shortening for folding under rheological conditions of the upper
crust: constant arc length folding is dominant for shortening values
smaller than about 30e40% (i.e. aspect ratio of about 0.5), but for
larger shortening values faulting and foliation development may
dominate during continued shortening. Clearly, a significant
component of shortening may occur prior and during the folding
which may result in foliation development. On the other hand,
folding can continue until large values of shortening in a purely
ductile regime, however, it is usually overprinted by pure shear
deformation, foliation transposition, and/orboudinage. Thismayalso
have some implications for the evolution of fault propagation folds,
where the folded layers are cutbyunderlying (thrust) faults after they
have been shortened by about 30e40%. Before the critical shortening
value, the limb dip and the area below the profile increase rapidly
while the interlimbangledecreases accordingly; the changesof these
parameters become increasingly slower after the critical value.

We speculate that folding close to constant arc length folding as
part of the macroscopic shortening process can be active up to
shortening values of about 30e40% under upper crustal conditions,
before shortening by foliation development, faulting and other
processes becomes dominant. Since the shortening taking place
during folding can reach high values, it can constitute a major
component of shortening in the upper continental crust such as for
examples observable in the Zagros and other continental collision
zones. In such areas, geometrical analyses of constant arc length
folding allow estimating the bulk shortening taking place during
folding.

References

Abbassi, M.R., Mancktelow, N.S., 1990. The effect of initial perturbation shape and
symmetry on fold development. Journal of Structural Geology 12, 273e282.

Abbassi, M.R., Mancktelow, N.S., 1992. Single layer buckle in non-linear material e I.
Experimental study of fold development from an isolated initial perturbation.
Journal of Structural Geology 14, 85e104.
Aller, J., Bastida, F., Toimil, N.C., Bobillo-Ares, N.C., 2004. The use of conic sections for
the geometrical analysis of folded surface profiles. Tectonophysics 379,
239e254.

Bastida, F., Aller, J., Bobillo-Ares, N.C., 1999. Geometrical analysis of folded surfaces
using simple functions. Journal of Structural Geology 21, 729e742.

Bastida, F., Bobillo-Ares, N.C., Aller, J., Toimil, N.C., 2003. Analysis of folding by
superposition of strain patterns. Journal of Structural Geology 25, 1121e1139.

Bastida, F., Aller, J., Bobillo-Ares, N.C., Toimil, N.C., 2005. Fold geometry: a basis for
their kinematical analysis. Earth Science Reviews 70, 129e164.

Bastida, F., Aller, J., Toimil, N.C., Lisle, R.J., Bobillo-Ares, N.C., 2007. Some consider-
ations on the kinematics of chevron folds. Journal of Structural Geology 29,
1185e1200.

Biot, M.A., 1961. Theory of folding of stratified viscoelastic media and its implica-
tions in tectonics and orogenesis. Geological Society of America Bulletin 72,
1595e1620.

Biot, M.A., 1964. Theory of internal buckling of a confined multilayered structure.
Geological Society of America Bulletin 75, 563e568.

Biot, M.A., 1965a. Theory of similar folding of the first and second kind. Geological
Society of America Bulletin 76, 251e258.

Biot, M.A., 1965b. Further development of the theory of internal buckling of
multilayers. Geological Society of America Bulletin 76, 833e840.

Bobillo-Ares, N.C., Aller, J., Bastida, F., Lisle, R.J., Toimil, N.C., 2006. The problem of
area change in tangential longitudinal strain folding. Journal of Structural
Geology 28, 1835e1848.

Bobillo-Ares, N.C., Bastida, F., Aller, J., 2000. On tangential longitudinal strain
folding. Tectonophysics 319, 53e68.

Carey, S.W., 1962. Folding. Journal of Alberta Society of Petroleum Geologists 10,
95e144.

Chamberlin, R.T., 1910. The Appalachian folds of central Pennsylvania. Journal of
Geology 18-3, 228e251.

Chapple, W.M., 1964. A Mathematical Study of Finite Amplitude Rock-folding.
Unpublished thesis, California Institute of Technology, 176 pp.

Chapple, W.M., 1968. A mathematical theory of finite-amplitude rock-folding.
Geological Society of America Bulletin 79, 47e68.

Chapple, W.M., 1969. Fold shape and rheology: the folding of an isolated viscous-
plastic layer. Tectonophysics 7, 97e116.

Connors, C., 1995. Determining heights and slopes of fault scarps and other surfaces
on Venus using Magellan stereo radar. Journal of Geophysical Research 100 (14),
361e381.

Currie, J.B., Patnode, H.W., Trump, R.P., 1962. Development of folds in sedimentary
strata. Geological Society of America Bulletin 73, 655e674.

Dahlstrom, C.D.A., 1990. Geometric constraints derived from the law of conserva-
tion of volume and applied to evolutionary models of detachment folding.
American Association of Petroleum Geologists Bulletin 74, 336e344.

De Paor, D.G., 1996. Bézier curves and geological design in structural geology and
personal computers. In: De Paor, D.G. (Ed.), Structural Geology and Personal
Computers. Pergamon Press, Oxford, pp. 389e417.

de Sitter, L.U., 1956. Structural Geology. McGraw-Hill, London.
de Sitter, L.U., 1958. Boudins and parasitic folds in relation to cleavage and folding.

Geologie en Mijnbouw 8, 277e286.
de Sitter, L.U., 1964. Structural Geology, second ed. McGraw-Hill, New York, 551 pp.
Dixon, J.M., Liu, S., 1992. Centrifuge modelling of the propagation of thrust faults. In:

McClay, K.R. (Ed.), Thrust Tectonics. Chapman & Hall, London, pp. 53e69.
Ghent, R., Hansen, V., 1999. Structural and Kinematic analysis of Eastern Ovda Regio,

Venus: implications for crustal plateau formation. Icarus 139, 116e136.
Goguel, J., 1962. Tectonics. Freeman, San Francisco, 348 pp.
Harbaugh, J.W., Preston, F.W., 1965. Fourier series analysis in geology. In: Symp.

Comput. Appl. Miner. Explor. Tuscan, Ariz, V.I. Rl-R46.
Hudleston, P.J., 1973a. Fold morphology and some geometrical implications of

theories of fold development. Tectonophysics 16, 1e46.
Hudleston, P.J., 1973b. An analysis of ‘single layer’ folds developed experimentally in

viscous media. Tectonophysics 16, 189e214.
Hudleston, P.J., 1973c. The Analysis and interpretation of minor folds developed in

the Moin rocks of Monar, Scotland. Tectonophysics 17, 89e132.
Hudleston, P.J., Treagus, S.H., Lan, L., 1996. Flexural flow folding: does it occur in

nature? Geology 24, 203e206.
Jeng, F.S., Huang, K.P., 2008. Buckling folds of a single layer embedded in matrix e

theoretical solutions and characteristics. Journal of Structural Geology 30,
633e648.

Jeng, F.S., Lai, Y.C., Teng, M.H., 2002. Influence of strain rate on buckle folding of an
elasto-viscous single layer. Journal of Structural Geology 24, 501e516.

Johnson, A.M., Ellen, S.D., 1974. A theory of concentric, kink, and sinusoidal folding
and of monoclinal flexuring of compressible, elastic multilayers. Part I, intro-
duction. Tectonophysics 21, 301e339.

Johnson, A.M., Honea, E., 1975a. A theory of concentric, kink, and sinusoidal folding
and of monoclinal flexuring of compressible, elastic multilayers. Part II, internal
stress and nonlinear equations of equilibrium. Tectonophysics 25, 261e280.

Johnson, A.M., Honea, E., 1975b. A theory of concentric, kink, and sinusoidal folding
andofmonoclinalflexuringof compressible, elasticmultilayers. Part III, transition
from sinusoidal to concentric-like to chevron folds. Tectonophysics 27, 1e38.

Kobberger, G., Zulauf, G., 1995. Experimental folding and boudinage under pure
constrictional conditions. Journal of Structural Geology 17, 1055e1063.

Kraus, J., Williams, P.F., 1998. Relationships between foliation development, por-
phyroblast growth and large-scale folding in a metaturbidite suite, Snow Lake,
Canada. Journal of Structural Geology 20, 61e76.



M.R. Ghassemi et al. / Journal of Structural Geology 32 (2010) 755e765 765
Lisle, R.J., Fernandez Martıinez, J.L., Bobillo-Ares, N., Menendez, O., Aller, J.,
Bastida, F., 2006. Fold profiler: a MATLABdbased program for fold shape clas-
sification. Computers & Geosciences 32, 102e108.

Mawer, C.K., Williams, P.F., 1991. Progressive folding and foliation development in
a sheared, coticule-bearing phyllite. Journal of Structural Geology 13, 539e555.

Mertie, J.B., 1959. Classification, delineation and measurement of non-parallel folds.
U. S. Geological Survey, Professional Paper 314-E, 91e124.

Mitra, S., 2003. A unified kinematic model for the evolution of detachment folds.
Journal of Structural Geology 25 (10), 1659e1673.

Norris, D.K., 1963. Shearing strain in simple folds in layered media. Geological
Survey of Canada, Paper 63 (2), 26e27.

Pollard, D.D., Fletcher, R.C., 2005. Fundamentals of Structural Geology. Cambridge
University Press, Cambridge, 500 pp.

Ramsay, J.G., 1967. Folding and Fracturing of Rocks. McGraw-Hill Book Comp., New
York, 568 pp.

Ramsay, J.G., 1974. Development of chevron folds. Geological Society of America
Bulletin 85, 1741e1754.

Ramsay, J.G., Huber, M.I., 1997. Modern Structural Geology. In: Folds and Fractures,
vol. 2. Academic Press, London, 700 pp.

Savage, H.M., Cook, L.C., 2003. Can flat-ramp-flat fault geometry be inferred from
fold shape? A comparison of kinematic and mechanical folds. Journal of
Structural Geology 25, 2023e2034.

Scharer, K.M., Burbank, D.W., Chen, J., Weldon, R.J., 2006. Kinematic models of
fluvial terraces over active detachment folds: constraints on the growth
mechanism of the Kashi-Atushi fold system, Chinese Tian Shan. GSA Bulletin
118 (7/8), 1006e1021.

Schmalholz, S.M., Podladchikov, Y.Y., 2000. Finite amplitude folding: transition from
exponential to layer length controlled growth. Earth and Planetary Science
Letters 181 (4), 619e633.

Schmalholz, S.M., Podladchikov, Y.Y., Burg, J.-P., 2002. Control of folding by gravity
and matrix thickness: implications for large-scale folding. Journal of
Geophysical Research 107 (B1), 2005. doi:10.1029/2001JB000355.

Schmalholz, S.M., Schmid, D.W., Fletcher, R.C., 2008. Evolution of pinch-and-swell
structures in a power-law layer. Journal of Structural Geology 30, 649e663.

Schmalholz, S.M., 2006. Scaled amplification equation: a key to the folding history
of buckled viscous single-layers. Tectonophysics 419, 41e53.

Sengupta, S., 1983. Folding of boudinaged layers. Journal of Structural Geology 5,
197e210.

Sherwin, J., Chapple, W.M., 1968. Wavelengths of single layer folds: a compar-
ison between theory and observation. American Journal of Science 266,
167e179.

Stabler, C.L., 1968. Simplified Fourier analysis of fold shapes. Tectonophysics 6,
343e350.

Twiss, R.J., 1988. Description and classification of folds in single surfaces. Journal of
Structural Geology 10, 607e623.

Vacas Peña, J.M., Martínez Catalan, J.R., 2004. A computer program for the simu-
lation of folds of different sizes under the influence of gravity. Computers &
Geosciences 30, 33e43.


	Kinematics of constant arc length folding for different fold shapes
	Introduction
	Fold geometry
	Representing fold geometries with mathematical functions
	Basic geometrical implications of fold shapes
	Curvature and dip distribution along fold profile

	Fold kinematics
	Bulk shortening during constant arc length folding
	Kinematic implications

	Application to natural and synthetic multilayer folds
	Discussion and conclusions
	References


